Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Int J Antimicrob Agents ; : 107181, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38653351

ABSTRACT

BACKGROUND: The aminoglycoside apramycin has been proposed as a drug candidate for the treatment of critical Gram-negative systemic infections. However, its potential in the treatment of drug-resistant bloodstream infections (BSIs) has yet to be assessed. METHODS: The resistance gene annotations of 40 888 blood culture isolates were analyzed. In vitro profiling of apramycin comprised cell-free translation assays, broth microdilution, and frequency of resistance determination. The efficacy of apramycin was studied in a mouse peritonitis model for nine Escherichia coli and Klebsiella pneumoniae isolates. RESULTS: Genotypic aminoglycoside resistance was identified in 87.8% of all 6973 carbapenem-resistant Enterobacterales blood-culture isolates, in comparison to 46.4% of colistin and 2.1% of apramycin resistance. Apramycin activity against methylated ribosomes was > 100-fold higher than other aminoglycosides. Frequencies of resistance were < 10-9 at 8  ×  MIC. Tentative epidemiological cutoffs (ECOFFs) were determined as 8 µg/mL for E. coli and 4 µg/mL for K. pneumoniae. A single dose of 5 to 13 mg/kg resulted in a 1-log CFU reduction in the blood and peritoneum. Two doses of 80 mg/kg, resulting in an exposure that resembles the AUC observed for a single 30 mg/kg dose in humans, resulted in complete eradication of carbapenem- and aminoglycoside-resistant bacteremias. CONCLUSION: Encouraging coverage and potent in vivo efficacy against a selection of highly drug-resistant Enterobacterales isolates in the mouse peritonitis model warrants further consideration of clinical studies to validate apramycin as a drug candidate for the treatment and prophylaxis of BSI.

2.
Int J STD AIDS ; 35(6): 462-470, 2024 May.
Article in English | MEDLINE | ID: mdl-38297880

ABSTRACT

BACKGROUND: While ceftriaxone resistance remains scarce in Switzerland, global Neisseria gonorrhoeae (NG) antimicrobial resistance poses an urgent threat. This study describes clinical characteristics in MSM (men who have sex with men) diagnosed with NG infection and analyses NG resistance by phenotypic and genotypic means. METHODS: Data of MSM enrolled in three clinical cohorts with a positive polymerase chain reaction test (PCR) for NG were analysed between January 2019 and December 2021 and linked with antibiotic susceptibility testing. Bacterial isolates were subjected to whole genome sequencing (WGS). RESULTS: Of 142 participants, 141 (99%) were MSM and 118 (84%) living with HIV. Participants were treated with ceftriaxone (N = 79), azithromycin (N = 2), or a combination of both (N = 61). No clinical or microbiological failures were observed. From 182 positive PCR samples taken, 23 were available for detailed analysis. Based on minimal inhibitory concentrations (MICs), all isolates were susceptible to ceftriaxone, gentamicin, cefixime, cefpodoxime, ertapenem, zoliflodacin, and spectinomycin. Resistance to azithromycin, tetracyclines and ciprofloxacin was observed in 10 (43%), 23 (100%) and 11 (48%) of the cases, respectively. Analysis of WGS data revealed combinations of resistance determinants that matched with the corresponding phenotypic resistance pattern of each isolate. CONCLUSION: Among the MSM diagnosed with NG mainly acquired in Switzerland, ceftriaxone MICs were low for a subset of bacterial isolates studied and no treatment failures were observed. For azithromycin, high occurrences of in vitro resistance were found. Gentamicin, cefixime, cefpodoxime, ertapenem, spectinomycin, and zoliflodacin displayed excellent in vitro activity against the 23 isolates underscoring their potential as alternative agents to ceftriaxone.


Subject(s)
Anti-Bacterial Agents , Azithromycin , Ceftriaxone , Genotype , Gonorrhea , Homosexuality, Male , Microbial Sensitivity Tests , Neisseria gonorrhoeae , Phenotype , Whole Genome Sequencing , Humans , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/isolation & purification , Switzerland/epidemiology , Male , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Gonorrhea/drug therapy , Gonorrhea/microbiology , Gonorrhea/epidemiology , Gonorrhea/diagnosis , Adult , Homosexuality, Male/statistics & numerical data , Ceftriaxone/pharmacology , Ceftriaxone/therapeutic use , Azithromycin/therapeutic use , Azithromycin/pharmacology , Drug Resistance, Bacterial/genetics , Middle Aged , Sexually Transmitted Diseases/microbiology , Sexually Transmitted Diseases/drug therapy , Sexually Transmitted Diseases/diagnosis , Sexually Transmitted Diseases/epidemiology , Cefixime/pharmacology , Cefixime/therapeutic use
3.
ACS Omega ; 9(5): 5876-5887, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38343924

ABSTRACT

Investigating the relationship between individual pKa values and the efficacy of aminoglycosides is essential for the development of more effective and targeted therapies. In this work, we measured the pKa values for individual amino groups of the six clinically relevant aminoglycoside antibiotics gentamicin, tobramycin, amikacin, arbekacin, plazomicin, and apramycin using 15N-1H heteronuclear multiple-bond correlation and 1H NMR experiments. For arbekacin and plazomicin, the pKa values are reported for the first time. These pKa values were used to calculate the net charges of the aminoglycosides and the protonation levels of amino groups under various pH conditions. The results were analyzed in relation to the mode of interaction and inhibition to establish pKa relationships for rRNA binding, inhibitory activity, and the pH dependence of the uptake into bacterial cells.

4.
Chemistry ; 30(19): e202400017, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38284753

ABSTRACT

The site-selective modification of complex biomolecules by transition metal-catalysis is highly warranted, but often thwarted by the presence of Lewis basic functional groups. This study demonstrates that protonation of amines and phosphates in carbohydrates circumvents catalyst inhibition in palladium-catalyzed site-selective oxidation. Both aminoglycosides and sugar phosphates, compound classes that up till now largely escaped direct modification, are oxidized with good efficiency. Site-selective oxidation of kanamycin and amikacin was used to prepare a set of 3'-modified aminoglycoside derivatives of which two showed promising activity against antibiotic-resistant E. coli strains.


Subject(s)
Aminoglycosides , Sugar Phosphates , Palladium , Escherichia coli , Anti-Bacterial Agents/pharmacology , Catalysis
5.
Antibiotics (Basel) ; 12(7)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37508308

ABSTRACT

The reference method for cefiderocol antimicrobial susceptibility testing is broth microdilution (BMD) with iron-depleted-Mueller-Hinton (ID-MH) medium, whereas breakpoints recommended for disk diffusion (DD) are based on MH-agar plates. We aimed to compare the performance of the commercial BMD tests ComASP (Liofilchem) and UMIC (Bruker), and DD and E-test using MH- and ID-MH-agar plates with the reference BMD method using 100 carbapenem-resistant-A. baumannii isolates. Standard BMD was performed according to the EUCAST guidelines; DD and E-test were carried out using two commercial MH-agar plates (BioMérieux and Liofilchem) and an in-house ID-MH-agar plate, while ComASP and UMIC were performed according to the manufacturer's guidelines. DD performed with the ID-MH-agar plates led to a higher categorical agreement (CA, 95.1%) with standard BMD and fewer categorization errors compared to the commercial MH-agar plates (CA BioMérieux 91.1%, Liofilchem 89.2%). E-test on ID-MH-agar plates exhibited a significantly higher essential agreement (EA, 75%) with standard BMD compared to the two MH-agar plates (EA BioMérieux 57%, Liofilchem 44%), and showed a higher performance in detecting high-level resistance than ComASP and UMIC (mean log2 difference with standard BMD for resistant isolates of 0.5, 2.83, and 2.08, respectively). In conclusion, DD and E-test on ID-MH-agar plates exhibit a higher diagnostic performance than on MH-agar plates and the commercial BMD methods. Therefore, we recommend using ID-MH-agar plates for cefiderocol susceptibility testing of A. baumannii.

6.
ACS Infect Dis ; 9(8): 1622-1633, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37481733

ABSTRACT

Complementing our earlier syntheses of the gentamicins B1, C1a, C2b, and X2, we describe the synthesis of gentamicins C1, C2, and C2a characterized by methyl substitution at the 6'-position, and so present an alternative access to previous chromatographic methods for accessing these sought-after compounds. We describe the antiribosomal activity of our full set of synthetic gentamicin congeners against bacterial ribosomes and hybrid ribosomes carrying the decoding A site of the human mitochondrial, A1555G mutant mitochondrial, and cytoplasmic ribosomes and establish structure-activity relationships with the substitution pattern around ring I to antiribosomal activity, antibacterial resistance due to the presence of aminoglycoside acetyl transferases acting on the 6'-position in ring I, and literature cochlear toxicity data.


Subject(s)
Anti-Bacterial Agents , Gentamicins , Humans , Gentamicins/pharmacology , Gentamicins/analysis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Aminoglycosides
7.
Tetrahedron ; 1352023 Apr 06.
Article in English | MEDLINE | ID: mdl-37035443

ABSTRACT

The design, synthesis and antiribosomal and antibacterial activity of two novel glycosides of the aminoglycoside antibiotic paromomycin are described. The first carries of 4-amino-4-deoxy-ß-D-xylopyranosyl moiety at the paromomycin 4'-position and is approximately two-fold more active than the corresponding ß-D-xylopyranosyl derivative. The second is a 4'-(ß-D-xylopyranosylthio) derivative of 4'-deoxyparomomycin that is unexpectedly less active than the simple ß-D-xylopyranosyl derivative, perhaps because of the insertion of the conformationally more mobile thioglycosidic linkage.

8.
ChemMedChem ; 18(1): e202200486, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36198651

ABSTRACT

An intramolecular hydrogen bond between the protonated equatorial 7'-methylamino group of apramycin and the vicinal axial 6'-hydroxy group acidifies the 6'-hydroxy group leading to a strong hydrogen bond to A1408 in the ribosomal drug binding pocket in the decoding A site of the small ribosomal subunit. In 6'-epiapramycin, the trans-nature of the 6'-hydroxy group and the 7'-methylamino group results in a much weaker intramolecular hydrogen bond, and a consequently weaker cooperative hydrogen bonding network with A1408, resulting overall in reduced inhibition of protein synthesis and antibacterial activity.


Subject(s)
Anti-Bacterial Agents , Nebramycin , Hydrogen Bonding , Anti-Bacterial Agents/chemistry , Nebramycin/chemistry , Ribosomes/metabolism , Aminoglycosides
9.
Int J Antimicrob Agents ; 60(4): 106659, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35988665

ABSTRACT

INTRODUCTION: Bloodstream infections (BSIs) are a leading cause of sepsis, which is a life-threatening condition that significantly contributes to the mortality of bacterial infections. Aminoglycoside antibiotics such as gentamicin or amikacin are essential medicines in the treatment of BSIs, but their clinical efficacy is increasingly being compromised by antimicrobial resistance. The aminoglycoside apramycin has demonstrated preclinical efficacy against aminoglycoside-resistant and multidrug-resistant (MDR) Gram-negative bacilli (GNB) and is currently in clinical development for the treatment of critical systemic infections. METHODS: This study collected a panel of 470 MDR GNB isolates from healthcare facilities in Cambodia, Laos, Singapore, Thailand and Vietnam for a multicentre assessment of their antimicrobial susceptibility to apramycin in comparison with other aminoglycosides and colistin by broth microdilution assays. RESULTS: Apramycin and amikacin MICs ≤ 16 µg/mL were found for 462 (98.3%) and 408 (86.8%) GNB isolates, respectively. Susceptibility to gentamicin and tobramycin (MIC ≤ 4 µg/mL) was significantly lower at 122 (26.0%) and 101 (21.5%) susceptible isolates, respectively. Of note, all carbapenem and third-generation cephalosporin-resistant Enterobacterales, all Acinetobacter baumannii and all Pseudomonas aeruginosa isolates tested in this study appeared to be susceptible to apramycin. Of the 65 colistin-resistant isolates tested, four (6.2%) had an apramycin MIC > 16 µg/mL. CONCLUSION: Apramycin demonstrated best-in-class activity against a panel of GNB isolates with resistances to other aminoglycosides, carbapenems, third-generation cephalosporins and colistin, warranting continued consideration of apramycin as a drug candidate for the treatment of MDR BSIs.


Subject(s)
Amikacin , Colistin , Aminoglycosides , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Asia, Southeastern , Blood Culture , Carbapenems , Cephalosporins , Colistin/pharmacology , Drug Resistance, Multiple, Bacterial , Gentamicins , Gram-Negative Bacteria , Microbial Sensitivity Tests , Nebramycin/analogs & derivatives , Pseudomonas aeruginosa , Tobramycin
10.
ChemMedChem ; 17(13): e202200120, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35385605

ABSTRACT

Modification at the 5''-position of 4,5-disubstituted aminoglycoside antibiotics (AGAs) to circumvent inactivation by aminoglycoside modifying enzymes (AMEs) is well known. Such modifications, however, unpredictably impact activity and affect target selectivity thereby hindering drug development. A survey of 5''-modifications of the 4,5-AGAs and the related 5-O-furanosyl apramycin derivatives is presented. In the neomycin and the apralog series, all modifications were well-tolerated, but other 4,5-AGAs require a hydrogen bonding group at the 5''-position for maintenance of antibacterial activity. The 5''-amino modification resulted in parent-like activity, but reduced selectivity against the human cytosolic decoding A site rendering this modification unfavorable in paromomycin, propylamycin, and ribostamycin. Installation of a 5''-formamido group and, to a lesser degree, a 5''-ureido group resulted in parent-like activity without loss of selectivity. These lessons will aid the design of next-generation AGAs capable of circumventing AME action while maintaining high antibacterial activity and target selectivity.


Subject(s)
Aminoglycosides , Ribosomes , Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , Humans , Neomycin/pharmacology , Protein Synthesis Inhibitors , Structure-Activity Relationship
12.
Antibiotics (Basel) ; 12(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36671225

ABSTRACT

The synthesis and antiribosomal and antibacterial activity of both anomers of a novel apralog, 5-O-(5-amino-3-C-dimethylaminopropyl-D-ribofuranosyl)apramycin, are reported. Both anomers show excellent activity for the inhibition of bacterial ribosomes and that of MRSA and various wild-type Gram negative pathogens. The new compounds retain activity in the presence of the aminoglycoside phosphoryltransferase aminoglycoside modifying enzymes that act on the primary hydroxy group of typical 4,5-(2-deoxystreptamine)-type aminoglycoside and related apramycin derivatives. Unexpectedly, the two anomers have comparable activity both for the inhibition of bacterial ribosomes and of the various bacterial strains tested.

13.
EBioMedicine ; 73: 103652, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34740109

ABSTRACT

BACKGROUND: The clinical-stage drug candidate EBL-1003 (apramycin) represents a distinct new subclass of aminoglycoside antibiotics for the treatment of drug-resistant infections. It has demonstrated best-in-class coverage of resistant isolates, and preclinical efficacy in lung infection models. However, preclinical evidence for its utility in other disease indications has yet to be provided. Here we studied the therapeutic potential of EBL-1003 in the treatment of complicated urinary tract infection and acute pyelonephritis (cUTI/AP). METHODS: A combination of data-base mining, antimicrobial susceptibility testing, time-kill experiments, and four murine infection models was used in a comprehensive assessment of the microbiological coverage and efficacy of EBL-1003 against Gram-negative uropathogens. The pharmacokinetics and renal toxicology of EBL-1003 in rats was studied to assess the therapeutic window of EBL-1003 in the treatment of cUTI/AP. FINDINGS: EBL-1003 demonstrated broad-spectrum activity and rapid multi-log CFU reduction against a phenotypic variety of bacterial uropathogens including aminoglycoside-resistant clinical isolates. The basicity of amines in the apramycin molecule suggested a higher increase in positive charge at urinary pH when compared to gentamicin or amikacin, resulting in sustained drug uptake and bactericidal activity, and consequently in potent efficacy in mouse infection models. Renal pharmacokinetics, biomarkers for toxicity, and kidney histopathology in adult rats all indicated a significantly lower nephrotoxicity of EBL-1003 than of gentamicin. INTERPRETATION: This study provides preclinical proof-of-concept for the efficacy of EBL-1003 in cUTI/AP. Similar efficacy but lower nephrotoxicity of EBL-1003 in comparison to gentamicin may thus translate into a higher safety margin and a wider therapeutic window in the treatment of cUTI/API. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Hydrogen-Ion Concentration , Nebramycin/analogs & derivatives , Pyelonephritis/drug therapy , Urinary Tract Infections/drug therapy , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Resistance, Multiple, Bacterial/drug effects , Humans , Mice , Microbial Sensitivity Tests , Nebramycin/pharmacology , Nebramycin/therapeutic use , Pyelonephritis/etiology , Rats , Treatment Outcome , Urinary Tract Infections/etiology
14.
Ann Clin Microbiol Antimicrob ; 20(1): 64, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34493302

ABSTRACT

BACKGROUND: Bacterial superinfections associated with COVID-19 are common in ventilated ICU patients and impact morbidity and lethality. However, the contribution of antimicrobial resistance to the manifestation of bacterial infections in these patients has yet to be elucidated. METHODS: We collected 70 Gram-negative bacterial strains, isolated from the lower respiratory tract of ventilated COVID-19 patients in Zurich, Switzerland between March and May 2020. Species identification was performed using MALDI-TOF; antibiotic susceptibility profiles were determined by EUCAST disk diffusion and CLSI broth microdilution assays. Selected Pseudomonas aeruginosa isolates were analyzed by whole-genome sequencing. RESULTS: Pseudomonas aeruginosa (46%) and Enterobacterales (36%) comprised the two largest etiologic groups. Drug resistance in P. aeruginosa isolates was high for piperacillin/tazobactam (65.6%), cefepime (56.3%), ceftazidime (46.9%) and meropenem (50.0%). Enterobacterales isolates showed slightly lower levels of resistance to piperacillin/tazobactam (32%), ceftriaxone (32%), and ceftazidime (36%). All P. aeruginosa isolates and 96% of Enterobacterales isolates were susceptible to aminoglycosides, with apramycin found to provide best-in-class coverage. Genotypic analysis of consecutive P. aeruginosa isolates in one patient revealed a frameshift mutation in the transcriptional regulator nalC that coincided with a phenotypic shift in susceptibility to ß-lactams and quinolones. CONCLUSIONS: Considerable levels of antimicrobial resistance may have contributed to the manifestation of bacterial superinfections in ventilated COVID-19 patients, and may in some cases mandate consecutive adaptation of antibiotic therapy. High susceptibility to amikacin and apramycin suggests that aminoglycosides may remain an effective second-line treatment of ventilator-associated bacterial pneumonia, provided efficacious drug exposure in lungs can be achieved.


Subject(s)
Anti-Bacterial Agents/pharmacology , COVID-19/microbiology , Gram-Negative Bacteria/drug effects , Respiratory System/microbiology , COVID-19/complications , Drug Resistance, Multiple, Bacterial/drug effects , Gram-Negative Bacteria/isolation & purification , Humans , Microbial Sensitivity Tests , Pneumonia, Ventilator-Associated/microbiology , Prospective Studies , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification , SARS-CoV-2/isolation & purification , Switzerland
15.
ACS Infect Dis ; 7(8): 2413-2424, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34114793

ABSTRACT

Propylamycin (4'-deoxy-4'-propylparomomycin) is a next generation aminoglycoside antibiotic that displays increased antibacterial potency over the parent, coupled with reduced susceptibility to resistance determinants and reduced ototoxicity in the guinea pig model. Propylamycin nevertheless is inactivated by APH(3')-Ia, a specific aminoglycoside phosphotransferase isozyme that acts on the primary hydroxy group of the ribofuranosyl moiety (at the 5''-position). To overcome this problem, we have prepared and studied the antibacterial and antiribosomal activity of various propylamycin derivatives carrying amino or substituted amino groups at the 5''-position in place of the vulnerable hydroxy group. We find that the introduction of an additional basic amino group at this position, while overcoming the action of the aminoglycoside phosphoryltransferase isozymes acting at the 5''-position as anticipated, results in a significant drop in selectivity for the bacterial over the eukaryotic ribosomes that is predictive of increased ototoxicity. In contrast, 5''-deoxy-5''-formamidopropylamycin retains the excellent across-the-board levels of antibacterial activity of propylamycin itself, while circumventing the action of the offending aminoglycoside phosphotransferase isozymes and affording even greater selectivity for the bacterial over the eukaryotic ribosomes. Other modifications to address the susceptibility of propylamycin to the APH(3')-Ia isozyme including deoxygenation at the 3'-position and incorporation of a 6',5''-bis(hydroxyethylamino) modification offer no particular advantage.


Subject(s)
Aminoglycosides , Anti-Bacterial Agents , Animals , Anti-Bacterial Agents/toxicity , Guinea Pigs , Microbial Sensitivity Tests , Ribosomes
16.
ChemMedChem ; 16(2): 335-339, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33007139

ABSTRACT

We describe the convergent synthesis of a 5-O-ß-D-ribofuranosyl-based apramycin derivative (apralog) that displays significantly improved antibacterial activity over the parent apramycin against wild-type ESKAPE pathogens. In addition, the new apralog retains excellent antibacterial activity in the presence of the only aminoglycoside modifying enzyme (AAC(3)-IV) acting on the parent, without incurring susceptibility to the APH(3') mechanism that disables other 5-O-ß-D-ribofuranosyl 2-deoxystreptamine type aminoglycosides by phosphorylation at the ribose 5-position. Consistent with this antibacterial activity, the new apralog has excellent 30 nM activity (IC50 ) for the inhibition of protein synthesis by the bacterial ribosome in a cell-free translation assay, while retaining the excellent across-the-board selectivity of the parent for inhibition of bacterial over eukaryotic ribosomes. Overall, these characteristics translate into excellent in vivo efficacy against E. coli in a mouse thigh infection model and reduced ototoxicity vis à vis the parent in mouse cochlear explants.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cochlea/drug effects , Escherichia coli/drug effects , Nebramycin/analogs & derivatives , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Carbohydrate Conformation , Cochlea/metabolism , Mice , Microbial Sensitivity Tests , Nebramycin/chemical synthesis , Nebramycin/chemistry , Nebramycin/pharmacology
17.
Clin Microbiol Infect ; 27(9): 1315-1321, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33316399

ABSTRACT

OBJECTIVES: Novel therapeutics are urgently required for the treatment of carbapenem-resistant Acinetobacter baumannii (CRAB) causing critical infections with high mortality. Here we assessed the therapeutic potential of the clinical-stage drug candidate EBL-1003 (crystalline free base of apramycin) in the treatment of CRAB lung infections. METHODS: The genotypic and phenotypic susceptibility of CRAB clinical isolates to aminoglycosides and colistin was assessed by database mining and broth microdilution. The therapeutic potential was assessed by target attainment simulations on the basis of time-kill kinetics, a murine lung infection model, comparative pharmacokinetic analysis in plasma, epithelial lining fluid (ELF) and lung tissue, and pharmacokinetic/pharmacodynamic (PKPD) modelling. RESULTS: Resistance gene annotations of 5451 CRAB genomes deposited in the National Database of Antibiotic Resistant Organisms (NDARO) suggested >99.9% of genotypic susceptibility to apramycin. Low susceptibility to standard-of-care aminoglycosides and high susceptibility to EBL-1003 were confirmed by antimicrobial susceptibility testing of 100 A. baumannii isolates. Time-kill experiments and a mouse lung infection model with the extremely drug-resistant CRAB strain AR Bank #0282 resulted in rapid 4-log CFU reduction both in vitro and in vivo. A single dose of 125 mg/kg EBL-1003 in CRAB-infected mice resulted in an AUC of 339 h × µg/mL in plasma and 299 h × µg/mL in ELF, suggesting a lung penetration of 88%. PKPD simulations suggested a previously predicted dose of 30 mg/kg in patients (creatinine clearance (CLCr) = 80 mL/min) to result in >99% probability of -2 log target attainment for MICs up to 16 µg/mL. CONCLUSIONS: This study provides proof of concept for the efficacy of EBL-1003 in the treatment of CRAB lung infections. Broad in vitro coverage, rapid killing, potent in vivo efficacy, and a high probability of target attainment render EBL-1003 a strong therapeutic candidate for a priority pathogen for which treatment options are very limited.


Subject(s)
Acinetobacter Infections , Anti-Bacterial Agents , Nebramycin/analogs & derivatives , Acinetobacter Infections/drug therapy , Acinetobacter baumannii/drug effects , Aminoglycosides/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Lung , Mice , Microbial Sensitivity Tests , Nebramycin/pharmacokinetics , Nebramycin/pharmacology
18.
J Org Chem ; 85(24): 16043-16059, 2020 12 18.
Article in English | MEDLINE | ID: mdl-32902280

ABSTRACT

With a view to facilitating prediction of the exocyclic bond to the pyranoside ring in higher carbon sugars, a model is advanced that relates the relative configuration of the three stereogenic centers comprised of the branchpoint and of the two flanking centers (C4-C5-C6 in aldoheptoses and higher and C5-C6-C7 in sialic and ulosonic acids) to that of the simple ring-opened pentoses. Assignment of a given stereotriad as arabino, lxyo, ribo, or xylo by inspection of the Fischer projection formulas permits prediction of conformation of the exocyclic bond by comparison with the known solution (= crystal in all cases) conformations of the simple pentitols. More remote stereogenic centers in the side chain, as in the 8-position of N-acetylneuraminic acid, have little impact on the conformation of the exocyclic bond. On the basis of this model the conformation of the exocyclic bond in ring I of 6'-homologated 4,5-disubstituted 2-deoxystreptamine class aminoglycoside antibiotics was predicted and was borne out by NMR analysis of newly synthesized derivatives in D2O at pD5. The antiribosomal and antibacterial activity of these derivatives is briefly presented and discussed in terms of preorganization of the side chain for binding to the ribosomal decoding A site. It is anticipated that this predictive analysis will also find use in the prediction of the conformation of the exocyclic bonds in other 2-(1-hydroxyalkyl)-3-hydroxytetrahydropyrans and tetrahydrofurans.


Subject(s)
Aminoglycosides , Sugars , Anti-Bacterial Agents/pharmacology , Carbon , Molecular Conformation
19.
Int J Mol Sci ; 21(17)2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32854436

ABSTRACT

Aminoglycoside antibiotics are powerful bactericidal therapeutics that are often used in the treatment of critical Gram-negative systemic infections. The emergence and global spread of antibiotic resistance, however, has compromised the clinical utility of aminoglycosides to an extent similar to that found for all other antibiotic-drug classes. Apramycin, a drug candidate currently in clinical development, was suggested as a next-generation aminoglycoside antibiotic with minimal cross-resistance to all other standard-of-care aminoglycosides. Here, we analyzed 591,140 pathogen genomes deposited in the NCBI National Database of Antibiotic Resistant Organisms (NDARO) for annotations of apramycin-resistance genes, and compared them to the genotypic prevalence of carbapenem resistance and 16S-rRNA methyltransferase (RMTase) genes. The 3-N-acetyltransferase gene aac(3)-IV was found to be the only apramycin-resistance gene of clinical relevance, at an average prevalence of 0.7%, which was four-fold lower than that of RMTase genes. In the important subpopulation of carbapenemase-positive isolates, aac(3)-IV was nine-fold less prevalent than RMTase genes. The phenotypic profiling of selected clinical isolates and recombinant strains expressing the aac(3)-IV gene confirmed resistance to not only apramycin, but also gentamicin, tobramycin, and paromomycin. Probing the structure-activity relationship of such substrate promiscuity by site-directed mutagenesis of the aminoglycoside-binding pocket in the acetyltransferase AAC(3)-IV revealed the molecular contacts to His124, Glu185, and Asp187 to be equally critical in binding to apramycin and gentamicin, whereas Asp67 was found to be a discriminating contact. Our findings suggest that aminoglycoside cross-resistance to apramycin in clinical isolates is limited to the substrate promiscuity of a single gene, rendering apramycin best-in-class for the coverage of carbapenem- and aminoglycoside-resistant bacterial infections.


Subject(s)
Acetyltransferases/genetics , Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Gram-Negative Bacteria/genetics , Gram-Negative Bacterial Infections/microbiology , Acetyltransferases/chemistry , Acetyltransferases/metabolism , Aminoglycosides/chemistry , Anti-Bacterial Agents/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbapenems/pharmacology , Catalytic Domain , Databases, Genetic , Genome, Bacterial/drug effects , Gram-Negative Bacteria/drug effects , Gram-Negative Bacterial Infections/drug therapy , Humans , Methyltransferases/chemistry , Methyltransferases/genetics , Methyltransferases/metabolism , Molecular Epidemiology , Mutagenesis, Site-Directed , Nebramycin/analogs & derivatives , Nebramycin/pharmacology , Standard of Care , Structure-Activity Relationship
20.
J Am Chem Soc ; 142(1): 530-544, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31790244

ABSTRACT

Apramycin is a structurally unique member of the 2-deoxystreptamine class of aminoglycoside antibiotics characterized by a monosubstituted 2-deoxystreptamine ring that carries an unusual bicyclic eight-carbon dialdose moiety. Because of its unusual structure, apramycin is not susceptible to the most prevalent mechanisms of aminoglycoside resistance including the aminoglycoside-modifying enzymes and the ribosomal methyltransferases whose widespread presence severely compromises all aminoglycosides in current clinical practice. These attributes coupled with minimal ototoxocity in animal models combine to make apramycin an excellent starting point for the development of next-generation aminoglycoside antibiotics for the treatment of multidrug-resistant bacterial infections, particularly the ESKAPE pathogens. With this in mind, we describe the design, synthesis, and evaluation of three series of apramycin derivatives, all functionalized at the 5-position, with the goals of increasing the antibacterial potency without sacrificing selectivity between bacterial and eukaryotic ribosomes and of overcoming the rare aminoglycoside acetyltransferase (3)-IV class of aminoglycoside-modifying enzymes that constitutes the only documented mechanism of antimicrobial resistance to apramycin. We show that several apramycin-5-O-ß-d-ribofuranosides, 5-O-ß-d-eryrthofuranosides, and even simple 5-O-aminoalkyl ethers are effective in this respect through the use of cell-free translation assays with wild-type bacterial and humanized bacterial ribosomes and of extensive antibacterial assays with wild-type and resistant Gram negative bacteria carrying either single or multiple resistance determinants. Ex vivo studies with mouse cochlear explants confirm the low levels of ototoxicity predicted on the basis of selectivity at the target level, while the mouse thigh infection model was used to demonstrate the superiority of an apramycin-5-O-glycoside in reducing the bacterial burden in vivo.


Subject(s)
Aminoacyltransferases/metabolism , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Glycosides/chemistry , Nebramycin/analogs & derivatives , Anti-Bacterial Agents/chemistry , Carbohydrate Conformation , Carbohydrate Sequence , Ethers/chemistry , Microbial Sensitivity Tests , Nebramycin/chemistry , Nebramycin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...